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Abstract: We explore gauge actions for lattice QCD, which are constructed such that the

occurrence of small plaquette values is strongly suppressed. By choosing strong bare gauge

couplings we arrive at values for the physical lattice spacings of O(0.1 fm). Such gauge

actions effectively tend to confine the Monte Carlo history to a single topological sector.

This topological stability facilitates the collection of a large set of configurations in a specific

sector, which is profitable for numerical studies in the ε-regime. The suppression of small

plaquette values is also expected to be favourable for simulations with dynamical quarks.

We use a local Hybrid Monte Carlo algorithm to simulate such actions, and we present

numerical results for the static potential, the physical scale, the topological stability and

the condition number of the kernel of the overlap Dirac operator. In addition we discuss

the question of reflection positivity for a class of such gauge actions.
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1. Introduction

The standard way to formulate the QCD gauge action on a lattice is given by the Wilson

gauge action[1]1

SW[U ] = β
∑

P

SP (UP ) , SP (UP ) = 1 − 1

3
Re TrUP . (1.1)

This choice is less problematic than the formulation of the fermionic part, since lattice

artifacts already scale with O(a2) (a is the lattice spacing), and there is no additive renor-

malization.

Nevertheless there are a number of suggestions for improved lattice gauge actions (for

instance the tree level improved Symanzik gauge action [3], the on-shell improved Lüscher-

Weisz action [4], and renormalisation group improved actions [5 – 7]). In general the goal

is to further suppress the scaling artifacts by including more extended closed loops in the

discrete formulation of the field strength tensor.

In the current work, instead, we look for gauge actions which suppress as far as possible

the occurrence of small plaquette values. Of course, this suppression prevents the gauge

field from fluctuating as it would for the Wilson gauge action, hence we have to use much

stronger bare gauge couplings g0 to arrive at a comparable lattice spacing. For practical

simulations a lattice spacing of O(0.1 fm) is required. For quenched simulations with the

Wilson gauge action such a lattice spacing is obtained for β = 6/g2
0 ≈ 6. We will see that a

lattice spacing of the same magnitude can still be obtained for the actions that drastically

suppress small plaquette values, if we drive β down to values around and even below 1.

1UP denotes the plaquette variables in a lattice gauge configurations given by the link variables Ux,µ ∈
SU(3). The sum in eq. (1.1) runs over all plaquettes, see e.g. ref. [2].
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2. Motivations for the suppression of small plaquette values

Small plaquette values SP (UP ) are expected to be linked to small eigenvalues of the

Dirac operator. Therefore, their suppression should speed up the simulation of dynam-

ical fermions, and bring further improvement, in addition to recent algorithmic develop-

ments [8]. However, these properties are not tested in this work; we leave them for further

investigations.

The suppression of small plaquette values should also help the computation of the over-

lap operator [9] – which is a solution of the Ginsparg-Wilson relation [10 – 12], {D, γ5} =
1
µDγ5D (for µ & 1). The corresponding overlap operator reads

Dov(mq) = µ
(

1 − mq

2µ

)[

1 + γ5Q/
√

Q2
]

+ mq , Q = γ5(DW − µ) , (2.1)

where we use lattice units (a = 1), DW is the Wilson operator and mq the quark mass.

The cost of the application of Dov essentially depends on the condition number of Q2. This

will be studied in section 4.4.

The overlap operator allows for a neat definition of the topological charge [11], through

the Atiyah-Singer index: ν = n+ − n−, where n± is the number of zero modes with pos-

itive/negative chirality. For independent configurations the distribution of ν is Gaussian,

and its width determines the topological susceptibility.

Small plaquette values are related to the possibility of changing the topological sector.

This connection was made rigorous first in ref. [13] for the overlap operator (2.1). If all the

plaquette variables UP in the configurations involved obey the inequality (at µ = 1) [13, 14]

SP (UP ) < ε =
1

(1 + 1/
√

2)d(d − 1)
' 1

20.5
, (2.2)

(where SP keeps the meaning of the standard gauge action of one plaquette, as in eq. (1.1)),

then the square root cannot vanish, topological transitions are excluded under continuous

deformations and the topological structure is continuum-like. This constraint ensures that

the spectrum of Q2 (the argument of the square root in the overlap formula (2.1)) is strictly

positive.2 In absence of zero modes this condition also guarantees the locality of the overlap

operator (in the sense of an exponential decay) [13].

A fixed topological sector in a Monte Carlo history is usually a problem. However, it

can become an advantage if we want to compare lattice computation to chiral perturbation

theory (χPT) in the ε-regime [16]. As opposed to the (more common) p-regime [17], the

ε-regime is characterized by a correlation length ξ = 1/mπ that exceeds the lattice size L

(ξ > L). In this unphysical situation finite size effects are very important, but they can

be related to χPT formulae. The interesting point is that these formulae involve the Low

Energy Constants as they appear in infinite volume. Therefore we can extract physically

relevant information even from the unphysical ε-regime.

What is crucial for us is that, in the ε-regime, observables tend to depend significantly

on the topological sector, and predictions exist for expectation values in specific sectors [18].

2The corresponding admissibility condition has also been studied on a non-commutative torus in ref. [15].
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Therefore, for numerical measurements it can be advantageous, if not necessary, to disen-

tangle the topologies, in order to extract maximal information. In this regime one would

often like to collect statistics at one specific value of |ν| to measure an expectation value in

this sector. For the parameters that have been used in the ε-regime simulations [19 – 27], it

would be of particular interest to collect large sets of configurations with |ν| = 1 and 2. A

box with V ≈ 10 fm4 is suitable, but the width of the Gaussian charge distribution is then

around 〈ν2〉 ≈ 10 [21, 25]. The index measurement by itself is computationally expensive,

hence identifying a set of, say, O(1000) configurations in one sector is a tedious task — if

one uses the standard Wilson gauge action.

Therefore, it is motivated to modify the lattice gauge action such that topological

transitions are suppressed. On the other hand, imposing the restrictive constraint (2.2)

could cause severe practical problems. The fluctuations of the gauge field would be limited

so much that one could only obtain a tiny physical lattice spacing and volume. However,

even for simulations in the ε-regime we have to require that the spatial box length L

exceeds some lower limit in the range of L & 1.1 fm . . . 1.5 fm (depending on the exact

criterion) [20 – 26].

Here we present numerical experiments with gauge actions which do suppress small

plaquette values, but only to the extent that still allows for a reasonable physical lattice

spacing to be obtained. Then there is no rigorous guarantee for topology conservation in

the Monte Carlo history.3 The hope is that the transitions are still strongly suppressed,

so that the history has periods of constant charge, which are sufficiently long to allow us

to collect many configurations in a specific sector. Moreover, if we can be confident that

topological transitions rarely happen, most of the index computation can be omitted; one

would just check after a number of configurations if the index has not changed.

These configurations should sample independently the observables to be measured in

a fixed topology. Since we aim at long sequences of fixed topological charge, this can also

be interpreted as a long topological autocorrelation time. Of course, at the same time, we

aim at a much shorter autocorrelation time for other observables.

3. The gauge actions

We now describe a number of non-standard lattice gauge actions, which suppress the unde-

sired small plaquette values. As long as the action for very smooth configurations — with

SP & 0 for all plaquettes — is not altered, the naive continuum limit coincides with the

one of the Wilson action (1.1), and with continuum QCD. The suppression becomes strong

when SP reaches the value of some parameter ε, which one would theoretically choose

according to eq. (2.2). For practical purposes we will have to relax ε to larger values. A

simple cutoff for SP at this value would be conceivable, but such a discontinuity in the ac-

3With respect to the topological charge one could object that a Monte Carlo history proceeds in discrete

jumps, so even with this constraint the charge conservation is not absolutely safe. However, this seems like

a minor problem, since the charge would still be conserved over very long periods in the history, and in

simulations of the HMC type the few remaining changes could be further suppressed by reducing the step

size dτ (at higher cost).
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tion (which would then suddenly jump to infinity) does not appear promising. We can still

impose a cutoff but let the plaquette action diverge continuously as SP increases towards

ε, if we modify SP of eq. (1.1) to the hyperbolic form

Shyp
ε,n (UP ) =

{

SP (UP )
[1−SP (UP )/ε]n for SP (UP ) < ε

+∞ otherwise
(3.1)

for n > 0. This formulation, with n = 1, was introduced by M. Lüscher and used for

conceptual studies of chiral gauge theories on the lattice [28]. In that case, ε was of course

set to a theoretically stringent value.

In simulations, this action was first used in the Schwinger model by H. Fukaya and T.

Onogi [29]. They set ε = 1, i.e. far above the theoretical value of about 0.29, but they still

observed topological stability over hundreds of trajectories.4

The infinite part in action (3.1) means that certain steps that the HMC algorithm

suggests have to be rejected for sure. Therefore we also have to verify with special care

that the acceptance rate is sufficiently high. This motivated us to consider further variants

of gauge actions, which also suppress the probability of plaquette actions SP > ε, but

which do not render a violation of this constraint completely impossible. Examples for

such actions are the “power actions”and the “exponential actions”,

Spow
ε,n (UP ) = SP (UP ) +

1

ε
SP (UP )n , (3.2)

Sexp
ε,n (UP ) = SP (UP ) · exp{SP (UP )n/ε} (n > 0) . (3.3)

In our numerical studies we included the actions Shyp
ε,1 and Sexp

ε,8 . Our preliminary

results were reported in refs. [30] and a comprehensive presentation will be given in the next

section. Further results along these lines for quenched QCD can be found in refs. [31, 32].

A theoretical objection against the lattice action (3.1) was raised by M. Creutz [33],

who observed that it does not provide a positive definite transfer matrix. By universality,

we expect positivity to be restored in the continuum limit. Still, only what can be proved

to hold at finite lattice spacing will certainly hold in the continuum limit. To this end

we should remark that our actions at least define a positive squared transfer matrix. In

fact for the gauge actions involved in our study “site reflection” positivity holds, since

the argument given in ref. [2] (section 3.2.8) applies unchanged. From the practical point

of view, the lack of positivity can be reflected in an irregular behaviour of the effective

potential V (r, t) at short time separation, as observed in ref. [34] for actions involving

rectangular loops (like those suggested in refs. [4 – 6]). This is a lattice artifact which does,

in principle, not constitute a problem, as long as one keeps far enough from the cutoff.5 In

the case of the actions considered in this work and with our statistical precision, such an

irregular behaviour could not been observed (see subsection 4.2).

4Note that the factor 1/3 in the term for SP of eq. (1.1) is actually 1/Nc for general SU(Nc) or U(Nc)

gauge groups. Moreover, the theoretical bound for ε in d = 2 is a factor 6 larger than in d = 4, as eqs. (2.2)

show (this factor is due to a summation
P

µ>ν
in the term for 1/ε).

5Problems can arise in the application of the variational method, where one has to choose a small

reference time.
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Figure 1: On the left: The ratio between the hyperbolic plaquette action (for n = 1) and standard

plaquette action, and the corresponding ratio for the exponential actions with n = 1 and n = 8

(the latter is the case we studied). On the right: the same ratios for the HMC forces, again as a

function of SP .

4. Numerical results

Actions of the types (3.1), (3.2) and (3.3) depend non-linearly on the link variables Ux,µ.

As a consequence, the heat-bath algorithm and over-relaxation cannot be applied straight-

forwardly. Therefore we use the local HMC algorithm, which was introduced in ref. [35].

Since these actions are still composed of separate contributions by the single plaquettes,

the force in the local HMC algorithm is a simple modification of the corresponding force

for the Wilson action,

F hyp
ε,n =

δShyp
ε,n (UP )

δUx,µ
= FW(UP ) · 1 + n−1

ε SP (UP )

[1 − 1
εSP (UP )]n+1

(4.1)

F exp
ε,n =

δSexp
ε,n (UP )

δUx,µ
= FW(UP ) ·

(

1 +
n

ε
SP (UP )n−1

)

exp
{1

ε
SP (UP )n

}

, (4.2)

where FW(UP ) =
δSP (UP )

δUx,µ

is the force of the Wilson action, and its modification by the second factor is of order

O(SP /ε) in both cases. This is illustrated in figure 1.

In such simulations, it is also of special importance to check that the results do not

depend on the starting configuration (once we start in the desired topological sector). It

would be conceivable that the constraint on the plaquette values causes also unwanted

obstructions. For all the quantities to be considered below, it turned out that this was not

the case; an example is discussed in subsection 4.5.

4.1 Plaquette values

As a first experiment we considered action (3.1) and searched for the lines of a constant

mean plaquette action 〈SP 〉 on a 44 lattice, as β and the action parameter ε are varied.
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Figure 2: The lines of constant plaquette values in the plane spanned by 1/ε and β, on a 44 lattice.

The result is shown in figure 2. As we decrease ε, very small values of β, i.e. strong bare

gauge couplings are needed to keep 〈SP 〉 constant. By decreasing the values of ε and β we

can in fact keep 〈SP 〉 approximately constant, while drastically suppressing the occurrence

of very small plaquette actions. To identify a line of a constant physics, we proceed in the

next subsection to larger lattices and we consider the static potential (since the plaquette

value cannot be used for this purpose).

4.2 The static potential and the physical scale

A very well established method for setting a scale in pure gauge theory is based on the

measurement of the static potential at intermediate distances. This potential, and the

resulting force, are extracted from the Wilson loop correlations at sufficiently large time

separations, such that excited states can be neglected.

The aim is to fix the quantity r0 = 0.5 fm [34] by tuning the dimensionless term

r2F (r)|r=r(c) = c , r0 = r(1.65) . (4.3)

To this end, we followed the procedure applied in refs. [36, 37], to which the reader can refer

for the details of the computation.6 The results for the action Shyp
ε,1 at different values of ε

and β are shown in table 1. From the scale r0/a we can identify an “equivalent” β-value

for the Wilson gauge action, which we denote by βW. It corresponds to the same lattice

spacing for the plaquette action (1.1), where we adopted the parametrisation formula in

ref. [36].

6Note that in the present computation we did not apply the multihit procedure.
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1/ε β r0/a βW dτ τplaq ftop τplaq · ftop acc. rate

0. 6.18 7.14(3) 6.18 0.1 7(1) 2.2(13) e-2 ≈ 1.5 e-1 > 99 %

1. 1.5 6.6(2) 6.13(2) 0.1 2.2(1) 3.0(23) e-3 ≈ 6.6 e-3 > 99 %

1. 1.5 6.6(2) 6.13(2) 0.05 2.0(1) 2.9(11) e-3 ≈ 5.8 e-3 > 99 %

1. 1.5 6.6(2) 6.13(2) 0.01 2.2(1) 3.5(8) e-3 ≈ 7.7 e-3 > 99 %

1. 1.5 6.6(2) 6.13(2) 0.005 2.3(2) 2.8(15) e-3 ≈ 6.4 e-3 > 99 %

1.18 1. 7.2(2) 6.18(2) 0.1 1.2(1) 2.0(12) e-3 ≈ 2.4 e-3 > 99 %

1.18 1. 7.2(2) 6.18(2) 0.02/0.01 1.3(1) 1.6(7) e-3 ≈ 2.1 e-3 > 99 %

1.25 0.8 7.0(1) 6.17(1) 0.1 1.1(1) 2.3(13) e-3 ≈ 2.5 e-3 > 99 %

1.52 0.3 7.3(4) 6.19(4) 0.1 0.8(1) 9.0(28) e-4 ≈ 7.2 e-4 ≈ 95 %

1.64 0.1 6.8(3) 6.15(3) 0.1 1.0(1) 1.3(7) e-3 ≈ 1.3 e-3 ≈ 65 %

1.64 0.1 0.05 0.7(1) 2.3(13) e-3 ≈ 1.6 e-3 ≈ 78 %

1.64 0.1 0.025 0.6(1) 3.5(20) e-3 ≈ 2.1 e-3 ≈ 93 %

1.64 0.1 0.001 0.5(1) 3.7(23) e-3 ≈ 1.9 e-3 ≈ 99 %

Table 1: Results for the hyperbolic actions Shyp
ε,1 , defined in eq. (3.1), for different values of

ε and β, on a 164 lattice. We first show the ratio r0/a, which fixes the physical scale. For

comparison we also display the β-values βW, which leads to the same physical scale for the Wilson

action (1.1) [36]. The trajectories were all of length 1 and divided into HMC steps of length dτ .

For the plaquette values this leads to a mean autocorrelation time τplaq, which we show as an

example for the autocorrelation of a non-topological quantity. The topological stability, on the

other hand, is measured by the frequency of topological transitions. More precisely, ftop is the

number of topological jumps (determined from cooling), normalised by the number of trajectories.

Its product with τplaq characterises the dominance of the topological autocorrelation. Finally we

give the acceptance rate of the local HMC algorithm. For each set of parameters in this table

we collected at least 200 thermalised configurations spaced by 50 trajectories each. A detailed

discussion is given in the following subsections.

1/ε β r0/a βW dτ τplaq ftop τplaq · ftop acc. rate

500 0.044 > 8.5 > 6.30 0.015 0.6(1) 2.5(36) e-4 ≈ 1.5 e-4 ≈ 99%

600 0.0134 8.0(2) 6.26(1) 0.015 0.6(1) 2.5(23) e-4 ≈ 1.5 e-4 ≈ 99%

1000 0.004 > 9 > 6.34 0.03 0.6(1) 0(0) ≈ 25%

1000 0.00113 7.9(1) 6.25(1) 0.015 0.6(1) 1.7(23) e-4 ≈ 1.0 e-4 ≈ 99%

Table 2: Results for the exponential actions Sexp
ε,8 , defined in eq. (3.3), for different values of ε

and β, on a 164 lattice. As in table 1 we first show the ratio r0/a and the Wilson β-value βW,

which leads to the same physical scale for the Wilson action (1.1) (here the finite size effects in the

evaluation of r0/a may be sizable). For different HMC steps dτ we then give the mean plaquette

autocorrelation time τplaq, the frequency of topological transitions, ftop, its product with τplaq and

the acceptance rate. The number of measurements for r0/a was at least 200 in each case. Further

comments are added in subsections 4.3 and 4.5.

Let us comment now on the possible errors in this evaluation:

• Previous computations [36] revealed that for a box size L & 3.3 r0 the finite size

effects for the computation of r0 can be safely neglected. The same work observed

– 7 –
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that for the Wilson action at β = 5.95 and L ' 2.4 r0 the finite size artifacts of the

force amount to ≈ 3%. In our study we deal with L = 16 ' (2.2 . . . 2.4) r0/a. Hence

we assume finite size effects for r0 to be of this order as well.

• The errors quoted on r0/a in table 1 and 2 are purely statistical (they were computed

by the jackknife method). The same errors are shown in figure 3, which we comment

on below. The extent of these errors is acceptable in this context, since a precise

determination of r0 was not the purpose of this work, so we did not aim at high

statistics.

• A way to check the lattice artifacts is to compare the short distance force at finite

lattice spacing with the one extrapolated to the continuum limit in ref. [37]. In

particular we measured the ratio

∆(r/r0) =
r2F (r/r0) − r2F (r/r0)|c

r2F (r/r0)|c
, (4.4)

where r2F (r/r0)|c denotes the continuum limit. The results for the action Shyp
ε,1

are shown in figure 3 (top). At short distances, lattice artifacts are below 15% for

all the different values of 1/ε and β that we included. Moreover, one observes that

discretisation errors grow substantially for increasing values of 1/ε, as expected. This

indicates that choosing even larger values of 1/ε — while keeping the physical lattice

spacing fixed — could introduce sizeable cutoff effects.

• For the Wilson action it turned out that the lattice artifacts can be reduced consid-

erably by using a so-called “tree level improved” definition of the force [36]. For this

purpose, one defines an improved distance rI such that the force does not contain

lattice artifacts at tree level,

F (rI) =
4

3

g2
0

4πr2
I

+ O(g4
0) . (4.5)

If we adapt this method, the procedure described before leads to the results shown

in figure 3 (bottom). For the largest values of 1/ε one observes some reduction of the

lattice artifacts, whereas they seem to increase for the smallest 1/ε. This behaviour is

not totally surprising, since it has been observed in other cases that this improvement

is not always guaranteed [38].

We also observe that the use of tree-level improved observables does not change the

results for r0/a itself (within the statistical errors).

• For a comparison of the scaling quality one may, for instance, refer to the Iwasaki

action [5] (at r0/a ' 6.0) and the DBW2 action [6] (at r0/a ' 5.5) at a dis-

tance r/r0 ≈ 0.3: in these cases the lattice artifacts were found to be of order

∼ 10% [38]. Those discretisation errors are therefore comparable to our results for

the actions Shyp
ε,1 .

– 8 –



J
H
E
P
0
3
(
2
0
0
6
)
0
1
7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

r/r
0

∆
(r

/r
1/ε=1.0; β=1.5

1/ε=1.18; β=1.0

1/ε=1.25; β=0.8

1/ε=1.52; β=0.3

1/ε=1.64; β=0.1

0
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.1

-0.05

0

0.05

0.1

0.15

rI /r0

∆
I

0
/r

(
)

r

1/ε=1.25; β=0.8
1/ε=1.18; β=1.0
1/ε=1.0; β=1.5

1/ε=1.52; β=0.3

1/ε=1.64; β=0.1

Figure 3: Lattice artifacts for the action Shyp
ε,1 . The plots show the relative deviation of the force

r2F (r) from the continuum results, given in eq. (4.4). The bottom plot uses a tree level improved

definition of the force (4.5).

We repeat that our statistics is modest, and our intention in this analysis was only to

check whether the errors and lattice artifacts are reasonably under control. This can be

confirmed from the results shown in figure 3, and the accuracy is fully sufficient for our

purposes.

4.3 Acceptance rate

Also the problem related to the acceptance rate has been mentioned in section 3. This point

motivated us to consider also a set of exponential actions of the type (3.3), in addition to

the hyperbolic actions, and the corresponding results are given in table 2. In both cases,

the acceptance rate is very high for most of the actions we studied. It drops, however, if

one pushes for very low values of ε (along with an extremely small β). As the last lines
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β 1/ε c2 c6 c11 c21

6.17 0 1051(369) 575(110) 461(46) 390(30)

6.18 0 723(294) 501(43) 424(27) 371(16)

6.19 0 872(499) 506(57) 437(25) 374(16)

1.5 1 453(101) 360(30) 325(11) 294(7)

1 1.18 390(34) 328(18) 302(10) 281(9)

0.8 1.25 439(89) 341(23) 311(15) 285(9)

0.3 1.52 369(41) 301(13) 280(7) 263(5)

0.1 1.64 433(82) 342(18) 315(14) 293(8)

Table 3: Condition numbers cn of the operator Q2 in the square root of the Neuberger overlap

operator at µ = 1.6, after projecting out the leading n − 1 modes of Q2. In this comparison we

always considered configurations generated by the local HMC algorithm with dτ = 0.1.

in table 1 show, the acceptance rate can actually be driven up again even at 1/ε = 1.64

by using very short HMC steps. However, this cannot be considered a solution, because it

increases the costs (especially in the dynamical case), and also the frequency of topological

transitions rises again (c.f. subsection 4.5). Therefore, this property sets another limit

on the suppression of the small plaquette values, in addition to the scaling of the static

potential at short distances.

4.4 The condition number of the kernel of the overlap operator

This subsection discusses the condition number of the operator Q2, which is crucial for the

computational effort required to deal with the overlap operator in eq. (2.1). Table 3 collects

our results for the action Shyp
1,ε compared to SW, at the values of ε and β corresponding

to approximately constant physics according to table 1. Similar results were presented in

refs. [32], which also include first tests with dynamical overlap fermions.

In our study we varied the parameter µ by units of 0.1 and found the optimal condition

numbers for all gauge actions involved at µ = 1.6. For the case of 10 eigenmodes of Q2

projected out, this property can be seen in the upper plot of figure 4. Hence we compare

the condition numbers at µ = 1.6 for different gauge actions in table 3 and in the lower

plot of figure 4. These results are based on 30 configurations in each case.

We show the condition numbers

cn := λmax/λn , (λmax, λn : largest resp. nth eigenvalue of Q2) (4.6)

which are relevant after projecting out the leading n−1 modes of Q2.7 We see that the cn are

indeed lowered as 1/ε increases, which reduces the effort for overlap fermion simulations.8

7We have checked that the polynomial degree for a fixed precision of the overlap operator is ∝
√

cn (to

a high precision). At the side-line, we also observed that there does not seem to be to any dependence of

the condition numbers cn on the topological sector.
8Alternatively, lower condition numbers cn can also be achieved by inserting an improved kernel Q into

the overlap formula, see for instance refs. [39, 25].
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Figure 4: Comparison of the condition number c11 for various values of µ (on top), and cn for

running n at µ = 1.6 (below), for different types of gauge actions. (The parameters µ and cn are

defined in eqs. (2.1) and (4.6).)

If n is around 20, then — for the smooth configurations that we considered here — the gain

compared to SW is only moderate. However, for the hyperbolic actions Shyp
1,ε the number

of these modes can be reduced drastically without much loss in the condition number of

the remaining operator. This is in contrast to SW, and it matters in applications, since the

special treatment of each of these projected modes also takes computation time (although

this is typically a minor part of the total computational effort).

4.5 Topological charge stability

For a quick analysis, we used the cooling method [40] to estimate the topological charge.
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The resulting topological stability over the trajectories is included in tables 1 and 2. In

independent tests we evaluated for a subset of the configurations the overlap indices setting

µ = 1.3, 1.4, 1.5, 1.6 and 1.7. Since we are dealing with smooth configurations, it does

not come as a surprise that we found an excellent agreement of more than 98 % for all

these definitions of the topological charge, i.e. the charges obtained with cooling and the

overlap index at any of the parameters µ listed up above.9 Hence the results in the tables

are relevant for the overlap index as well.

As a more direct illustration, we show typical histories of the topological charge (de-

fined by cooling) for different parameters in figure 5. To measure the stability of the

topological sector, we monitored the number of charge changes normalised by the number

of trajectories. We denote this parameter as the “frequency of topological transitions”,

ftop, and give results in tables 1 and 2.

As we already mentioned in subsection 4.3, for a fixed dτ the acceptance rate drops

when we increase 1/ε up to 1.64. Although this problem can be alleviated by reducing

dτ , it indicates that at this point the system tends to run too often into forbidden regions,

beyond the admissibility cutoff. Therefore we also explored an action, which does not

have any strictly forbidden plaquette values. For instance, for the actions in eqs. (3.2)

and (3.3) the suppression of small plaquette values rises smoothly. Our results for the

exponential action Sexp
ε,8 are collected in table 2. We see that these actions do allow us to

render the topology somewhat more stable, and again small HMC steps help us to keep the

acceptance rate high. However, it is difficult to fulfil the requirement r0/a . 7, although

we already chose extremely low values for β. Therefore we did not push further into that

direction.

Let us add some technical aspects about the evaluation of ftop. Although measuring

the charges by cooling is rather cheap, it could still not be evaluated after each trajectory

(since we were dealing with quite long histories). A reliable determination of ftop can

only be done if the number of trajectories, which are skipped between two measurements

of the charge Qtop, is much less than the typical number of trajectories over which Qtop

remains constant. It turned out that for SW it was sufficient to cool one configuration in 5

trajectories. For the gauge actions at 1/ε > 0, one configuration out of 50 trajectories was

typically enough.

The error on ftop was estimated only in a crude way. This is done by counting the

transitions in 5 sub-histories and taking the standard deviation from these 5 samples. The

idea is inspired by the jack-knife method, but the difference is that the sub-histories have

to consist of contiguous elements.

Of course, we also need to consider the effect of 1/ε > 0 on the autocorrelation time

with respect to non-topological quantities. One could be worried that an improved topo-

logical stability comes along with a longer autocorrelation for other observables as well.

Our consideration of the plaquette value indicates the opposite: its autocorrelation time

decreases significantly with increasing 1/ε, see tables 1 and 2.

9On the other hand, if we decrease βW for instance to 5.85, the charge Qtop depends significantly on the

method of its determination [25].
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Figure 5: Typical histories of the topological charge for the actions SW (on top) and Shyp
ε,1 at

various combinations of ε and β, as in table 1. We show results obtained on a 164 lattice with the

HMC step size dτ = 0.1. We see that an increased 1/ε keeps the charge more and more stable.

The charge was measured by cooling once in 50 trajectories, except for the plot at β = 6.18, where

measurements were made every single or every 5 trajectories. Notice, on the other hand, that in

the plot at β = 6.19 the assumption that the separation of measurements is much larger than the

typical distance of topology changes is not justified, and the frequency of topological transitions

based on this plot would be underestimated.

Another conceivable problem could be bad ergocity properties even within one topo-

logical sector as 1/ε is switched on. We checked this by performing simulations from
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β 1/ε 〈UP 〉 τplaq starting point

6 0 0.59371(3) 9.2 cold

6.19 0 0.61181(2) 7.2 cold

0.8 1.25 0.598371(4) 1.1 cold

0.8 1.25 0.598372(4) 1.1 Qtop = 1

0.8 1.25 0.598367(4) 1.1 Qtop = 2

0.8 1.25 0.598369(4) 1.0 Qtop = 3

0.3 1.52 0.601034(3) 0.8 cold

0.3 1.52 0.601028(3) 0.8 Qtop = 1

Table 4: Comparison of mean plaquette values 〈UP 〉 for different parameters and different starting

points (out of 10 000 trajectories in a volume 164). The decreased plaquette autocorrelations lead

to a much more precise determination of 〈UP 〉. We see a remarkable agreement up to this high

precision for different starting points, even in different topological sectors.

9000 9200 9400 9600 9800 10000

0.59
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0.6

0.605

0.61

0.615

0.62

trajectories

U
P

β=6.19; 1/ε=0

β=0.3; 1/ε=1.52

β=0.8; 1/ε=1.25

β=6.0; 1/ε=0

Figure 6: Comparison of short portions of plaquette histories for different combinations of β and ε.

independent starting points and found that the mean plaquette values agree to a very high

precision, see table 4 and figure 6.

Of course, such tests should be extended to further observables, but our results for the

plaquette value are encouraging.

5. Conclusions

The conservation of the topological charge can be implemented in the lattice gauge action to

some extent. There are various obstacles preventing a strict implementation, such as scaling

artifacts and the acceptance rate. Still, we succeeded in obtaining long sequences of a stable
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topological charge, although it cannot be fixed strictly, as expected. Our comparison to the

behaviour of the plaquette value suggests that the topological autocorrelation time exceeds

by far the autocorrelation of other observables. This property facilitates the collection

of many configurations in a specific topological sector, for actions which are perfectly

acceptable. We also observed that such actions do not seem to suffer from any conceptual

problems. In particular the resulting static potential is fully consistent with the right

continuum limit, and it has relatively mild lattice artifacts. We also showed that at least

a positive squared transfer matrix can be defined.

Moreover we found benefits of this action for the condition number of the kernel of the

overlap operator, which allows for a somewhat faster evaluation with a fixed accuracy. We

finally remark that our findings are in accordance with recent results of refs. [32]. Further

virtues, in particular in view of the simulations with dynamical quarks, still remain to be

explored.
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